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ABSTRACT 

The patches that fix the critical issues, or implement new functionality with high value features are frequently 

promoted directly from the development channel to a stabilization channel. This practice that takes place in the 

rapid development process, potentially by skipping one or more stabilization channels is called patch uplift. 

Patch uplift is mandatory to fix the bugs reported by the quality assurance team or by the users but at the same 

time is risky, because the patches that are rushed through the stabilization phase can end up introducing 

regressions in the code. This paper examines the patch uplift of the python software projects and tries to analyze 

whether the patch uplift increases or decreases the maintenance of the project. The result shows that as the 

patch uplift takes place, the main focus of the development team lies in improving  the coding standards i.e., 

with the increase in patch uplifts, the code smells approximately reduce. The results also show the relationship 

between the coding standards followed, the new modules added and the number of the bugs reported. 

Keywords: Bugs, code smells, patch, python software project, quality assurance, regression. 

1. INTRODUCTION 

As the law of software engineering says, “No matter where you are in the system life cycle, the system will 

change, and the desire to change it will persist throughout the life cycle”. As a man-made artifact, software 

suffers from different type of errors, referred to as software bugs, which cause the software to produce an 

incorrect or unexpected result, or to behave in an unintended way and significantly threaten not only the 

reliability but also the security of computer systems. Therefore, a software bug can be defined as a problem or 

an issue causing a program to crash or produce an invalid input. Bugs are detected either during the software 

development life cycle by the testing team or by the customers or users post release of the software. Once a bug 

is discovered and reported, it needs to be fixed by the developers. In particular, for bugs that have direct and 

severe impact on customers, vendors usually make releasing timely patches the highest priority in order to 

minimize the amount of system down time. 

Software that falls to fulfill the specified requirements needs to be fixed. This can be because of the following 

reasons: 

i.  The mistake that has been committed between the initial requirements and the final operation of the 

software system.  

ii. The unrealistic time schedule for the software development 

iii. Lack of the designing experience 

iv. Lack of version control 

v. Lack of coding practice experience 
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vi. Buggy third party tools 

vii. Last minute changes in the requirements 

viii. Poor software testing skills 

     Today, software bugs remain a continuous and expensive fixture of industrial and open source software 

development. Using the software configuration management (SCM) systems, the software projects carefully 

control their changes and capture the bug reports using the bug tracking software such as Bugzilla. Thus 

recording which change in the SCM fixes a specific bug in the change tracking system. The major problem with 

the bug fix data is that it sheds no light on when a bug has been injected into the code and who injected it. 

     Fixing the bugs results in addition of a software patch. A software patch is a piece of software that is 

designed to update a computer program or its supporting data, to fix or improve it. A patch is added frequently 

to fix the security vulnerabilities and other bugs named as bug fixes, and to improve the usability and the 

performance. In addition to this the patches are also added to introduce the new features which sometimes can 

be risky if the patches are poorly designed. Fixing one problem can sometimes introduce new problems due to 

the poorly designed patches. In special cases, the updates may knowingly break the functionality of the product.  

     In this paper we conduct a series of quantitative and qualitative analysis to understand the effects of uplifting 

a software patch. Overall we analyzed 32 versions of Trac. Trac is an open source web-based project 

management and bug tracking system that is adopted by various organizations for the use of bug tracking system 

for both free and open-source software and proprietary projects and products. Trac is developed in python 

development framework and is used by Internet Research task Force, JQuery UI, and WordPress. 

2. LITERATURE REVIEW 

The software bugs and their effect on the software quality and maintenance has gradually increased the interest 

of the researchers for which they were interested lately. Although there has been a less amount of research done 

in analyzing the python software system as compared to other systems of other platforms. Matteo Orrú et al ( 

2015) [9]  presented a dataset of metrics of python systems. They built the corpus, discussed  the main issues in 

creating it, and provided its description and limitation. They also suggested the use of the data set for the 

empirical studies of the python systems that allows reproducibility of thus lowers the cost of the experiments. 

Zhifei Chen et al (2016). [2] introduced 11 smells and described the detection strategy. They also implemented 

the detection tool namely Pysmell that was used to identify the code smells in five real world python systems. 

Their results showed that Pysmell could detect 285code smell instances in total with the average precision of 

97.7%, which revealed that large classes and large methods are more prevalent. .Wanwangying et. al. 2017)[3] 

conducted an empirical study on the cross-project correlated bugs i.e., a pair of casually related issues reported 

to different projects, focusing on two aspects. One aspect being how developers track the root causes across the 

projects and the second aspect how the downstream developers coordinate to deal with the upstream bugs. They 

manually identified and inspected 271 of the cross project bugs in a scientific python ecosystem and conducted 

an online survey with 116 respondents in the scientific python community. Their empirical results revealed the 

common practices of the developers when fixing the cross-project bugs and provide suggestions for the 

ecosystem-wide tool supports. Dag et al (2012)[4] Tried to investigate whether the metrics are consistent among 

themselves and to which extent they predict maintenance effort at the entire system level. However, their results 
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showed that the metrics were mutually consistent. Only the system size and low cohesion were associated with 

the increased maintenance effort. However, they also concluded that apart from the size, surrogate 

maintainability measures might not reflect the future maintenance effort. In order to use the surrogates they need 

to be evaluated first in the context for which they will be used.  Their results suggest that the local 

improvements should be accompanied by an evaluation at the system level. .Varuna et al (2015)[10] assessed 

the correlation of the bug indicators (DIT, CBO, LoC) with software bugs and developed the software prediction 

models using these bug indicators as model inputs. They also compared the relative effectiveness of these bug 

indicators towards prediction of bugs in Camel and Ant projects.  

Mortiz et al (2014) [7] empirically explored the problems fixed through the modern code reviews (MCR) in 

open source software systems (OSS) and tried to increase the understanding the practical benefits that the MCR 

process produces on the code reviews. They manually classified 1,400 changes taking place in the reviewed 

code from the two OSS projects into a validated categorization scheme. The results showed that the types of due 

to the modern code review process in OSS were very similar to those in the academic systems and the industry 

from the literature. Their main contribution included the change classification i.e, a validated change 

classification for the java and C projects to better understand the actual effects of code reviews on 1400 changes 

done in reviews. The similarity ratio of maintainability-related to the functional problems being 75:25. They 

also revealed that 7-35% of the code review comments were discarded and 10-22% of the changes were not 

triggered by an explicit comment. In addition to this found that the bug-fixing tasks lead to fewer changes and 

the tasks with more altered files and a higher code churn have more changes. Their results reveal that 75% 

changes are related to the evaluability of the system. The more code churn or the higher number of touched files 

in a task, the more they expected the review on average. 

Zhifei Chen et al (2017) [11]defined and detected the code smells in the python programs and explored the 

effects of the python smells on software maintainability. They introduced the 10 code smells and established a 

metric based detection method with three filtering strategies that they used to specify the metric thresholds 

(Statistics-Based-Strategy, Experience-Based-Strategy and the Tuning-Machine-Strategy).They performed a 

comparative study to investigate that how these three detection strategies perform in detecting the python smells 

and how these smells affect the maintainability with different detection strategies. They utilized the corpus of 

106 popular projects on GitHub. Their results showed that metric-based performed well in detecting python 

smells and Tuning Machine detection achieved some different smell occurrences. In addition to this, the Long 

Parameter List and Long method are more prevalent than other smells. Their results also showed that there are 

several kinds of smells that are more significantly related to the changes or the faults in the python module. . 

Nicole Vavrova et al (2016)[8] developed a tool called the design defect detector, which parses a python 

module, creates a code model of it and reports on the presence of various design defects found there. They 

however compared the design defect density in python to the design defect density in java and found that the 

density measured in python (6.07 defects per 10,000 lines of code) was slightly lower than the density measured 

in java (8.37 defects per 10,000 lines of code).  

Marco castallucioo et al (2017)[12] conducted a series of qualitative and quantitative analysis to understand the 

decision making the process of patch uplift at Mozilla and characteristics of uplifted patches that introduce 



 

3124 | P a g e  
 

regressions. They analyzed 33664 issue reports in 17 versions of Mozilla over a period. They examined the 

characteristics of the uplifted patches that introduced regressions in the code and found that they are more 

complex than clean uplifts. 

3. METHODOLOGY AND APPROACH 

The understanding of how a software project has grown, software evolution research influences the history of 

changes and bug reports .Thus by examining the history of the changes made to a software project, it’s possible 

to better understand the patterns of bug introduction. In addition to this, make the developers aware of working 

on the risky i.e., the bug-prone sections of the software project. Since the source code matters, a change in one 

file may result in the change in multiple files of the software. Thus, there is a chance that fixing a single bug 

may result in introduction of new bugs in the software. . However, the bugs need to be fixed to avoid causing a 

failure or minimizing the possibility of introducing new bugs in the software. As a result increasing the 

reliability of the software system. 

3.1 Data collection 

The source code of a project is an essential component for any type of analysis. The characteristics of a source 

code determines the types of results we can infer for them. However, the bug list for such projects can be 

essential component for ensuring better quality assurance of the product. If we select a project, big enough to 

represent an industry sized software, the inferences can hold true for the industry software as well as the 

academicians. Therefore, a person needs to be wise while selecting an open source project .We selected an open 

source project with some stability and proper documentation. We collected, from the Trac issue tracking system, 

all the bugs with the priority being highest, high, normal, low and lowest AND type of bug being defect, 

enhancement of 32 versions of the Trac. Table 1 shows the release dates of different versions of Trac that were 

analyzed. 

S.NO TRAC Version 
Release Date 

 

TRAC 0.0.x releases 

1. 0.12 'Babel' 
(June 13, 2010) 

 

2. 0.12.1 

(October 9, 2010) 

 

 

 

3. 0.12.2 (January 31, 2011) 

4. 0.12.3 
(February 6, 2012) 
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5. 0.12.4 
(September 7, 2012) 

 

6. 0.12.5 
(January 15, 2013) 

 

7. 0.12.6 
(October 23, 2014) 

 

8. 0.12.7 
(July 12, 2015) 

 

Trac 1.0.xx releases 

9. 1.0 “Cell” 
(September 7, 2012) 

 

10. 1.0.1 
(February 1, 2013) 

 

11. 1.0.2 
(October 23, 2014) 

 

12. 1.0.3 
(January 13, 2015) 

 

13. 1.0.4 
(February 8, 2015) 

 

14. 1.0.5 
(March 24, 2015) 

 

15. 1.0.6 
(May 20, 2015) 

 

16. 1.0.7 
(July 17, 2015) 

 

17. 1.0.8 
(July 24, 2015) 

 

18. 

 
1.0.9 

(September 10, 2015) 

 

19. 1.0.10  (February 20, 2016) 

20. 1.0.11 
(May 7, 2016) 

 

21. 1.0.12 
(July 4, 2016) 

 

22. 1.0.13 
(September 11, 2016) 

 

23. 1.0.14 
(June 9, 2017) 

 

24. 1.0.15 
(June 16, 2017) 

 

TRAC Versions1.1.x releases 
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25. 1.1.1 
(February 3, 2013) 

 

26. 1.1.2 
(October 23, 2014) 

 

27. 1.1.3 
(January 13, 2015) 

 

28. 1.1.4 
(March 24, 2015) 

 

29. 1.1.5 
(May 18, 2015) 

 

30. 1.1.6 
(July 17, 2015) 

 

TRAC Versions1.2.x releases 

31. 1.2 “Hermes” (November 5, 2016) 

 

32. 1.2.1 (March 29, 2017) 

 
Table 1: The release dates of different versions of Trac 

3.2 Data extraction 

The degree of the impact that a bug has on the development or operation of a component system is called the 

bug severity. Higher effect on the severity will lead to assignment of the higher to the bug. The quality 

assurance engineer usually determines the severity level of the bug. The bug severity classification in several 

types, the actual terminologies and their meaning can vary depending upon the people, projects, organizations, 

or defect tracking tools. The bugs of the above-mentioned versions were extracted depending upon the severity, 

type, priority of the bugs. The bugs are divided into two categories: 

i. Release blocker: 

Any software can have the bugs. All the bugs cannot be fixed otherwise the product would never be 

released. Those bugs that could block the release of the product is called the release blocker bug and has the 

following symptoms: 

a) the application cannot be installed 

b) the application does not start 

c) the data is lost 

d) the running of the application results in a crash 

e) freezing of the application 

f) the security bug 

g) the license problem 

The release blockers must fulfill the following conditions: 

a) the problem must be reproducible by more users; if it is not, its most likely the problem on the 

other user side. 
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b) Broken functionality must be regression against the last released version; if it was not reported 

early, it is a rarely used function and the fix could not wait until the next release. 

c) The problem must affect most users or there must not be a reasonable workaround; its bad to 

block the release for all users because of a corner case when there exists a reasonable 

workaround 

ii. Normal Bugs: 

Normal bugs are those that are not critical, major or release blocker. They have isolated impact and 

may have workarounds. Most of the issues are considered normal. 

The normally accepted classification of the severity of the bugs is following: 

a) Critical: If the bug affects the critical functionality or the critical data it’s a critical bug. It can 

also lead to the complete shutdown of the process and nothing can proceed further. It does not 

have a work around. The examples are unsuccessful installation, complete failure of a future. 

b) Major: If the bug affects the major functionality or the major data, it’s a major bug. It has a 

highly sever defect and can collapse the system. However, certain parts of the system remain 

functional. For example a feature is not functional from one module but the task is doable if 

10 complicated indirect steps are followed in another module/s. 

c) Minor: If a bug affects a minor functionality or non-critical data, it is a minor bug. It causes 

some undesirable behavior but the system is still functional i.e., it has an easy work around. 

For example a minor functionality is function from one module but the same task is easily 

doable from another module 

d) Trivial: It doesn’t affect the functionality or the data. It does not impact productivity or 

efficiency. For example the petty layout disappearances, spelling/grammatical errors. 

Bug priority can be defined as the order in which a bug should be fixed. Higher the priority sooner the bug will 

be resolved. Bug priority can be classified into three classes. 

i. Highest: This bug is given the more priority to be fixed as soon as possible as it can affect the 

major functionality of the product. 

ii. High: The Bug should be resolved as soon as possible as it affects the system severely and cannot 

be used until it’s fixed. 

iii. Normal. : During the normal course of the development activities, the bug should be fixed. It can 

wait until a new version is created. 

iv. Low: The bug is irritant but can be fixed after the more serious are fixed. 

v. Lowest: These types of bugs are given the least priority and are fixed after bugs with the low 

priority are fixed. 

Apart from these priorities, one more class of bugs exist called the feature request/new feature/ 

enhancement bugs, where the users/testers request for the new features e.g., providing a better UX for 

creating, editing and managing draft revisions. 
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3.3 Bug association 

 The versions of the Django were selected on the basis if the substantial difference in the release dates and were 

examined for the presence of bugs. The bugs were selected depending upon the type and severity of the bug.  

Version:0.12Babel',0.12.1,0.12.2,0.12.3.0,12.4.0,12.5,0.12.6,0.12.7,1.0,1.0.1,1.0.2,1.0.3,1.0.4,1.0.5,1.0.6,1.0.7,1

.0.8,1.0.9,1.0.10,1.0.11,1.0.12,1.0.13,1.0.14,1.1.1,1.1.2,1.1.3,1.1.4,1.1.5,1.1.6,1.2 and 1.2.1. 

Priority: Highest, High, Normal, Low, and Lowest. 

Type: normal, enhancement and task. 

Status: closed, assigned and new. 

Resolution: fixed, invalid, won fix, duplicate, works fine and needs info. 

After the mapping of the bugs was done with the parameters mentioned above, the resultant files contained the 

distribution of the defects per version as: 

S.NO TRAC version Defects Enhancements 

1 TRAC 0.12.x 388 65 

2 TRAC 1.0.x 292 42 

3 TRAC 1.1.x 40 14 

4 TRAC 1.2.x 23 26 

 

TOTAL 

  

743 123 

 866 

Table2: The total number of bugs in different Trac versions 

4. RESULTS AND DISCUSSION 

The 32 versions of the Trac were tested on the pylint. A script was written in python  that analyzes the source 

code of the entire python project looking for the signs of poor quality. Pylint is a source code, bug and the 

quality checker for the python programming language that follows the style recommended by PEP8 [13] (the 

official style guide of python core).  The script tests each and every file and rates the code of the entire project 

depending upon the standards like if the variable names are well formed according to the project's coding 

standards or if declared interfaces are truly implemented [14] or not, etc. followed in the code. Table 2 shows 

the average rate of the 32 versions of Trac. 

Figures 1-4 show the average rate of the code of the respective versions of Trac tested on the pylint. The 

elevating slope shows that the patch uplift results in improving the standards of the code i.e., it depicts with 

increase in the version of the project there are approximately lesser chances of the security vulnerabilities and 

bugs. It may be noted that the rate of none of the versions of the Trac has reached 7.0 indicating the fact that the 

software can never be bug free. The figures 5-8 show the relationship between the number of the module files 

and the number of the bugs reported. The graphs show that with increase in the patch uplift, the number of bugs 

are also reduced. The stabilization phase only focuses on the reliability of the product and tries to make the 

product bug free. Thus adding the patches till the stability is achieved. 
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Figure 1: Average rate of Trac 0.12.xx versionsFigure 2: Average rate of Trac 1.0.xx versions 
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Figure 3: Average rate of Trac 1.1.xx versionsFigure 4: Average rate of Trac 1.1.xx versions 
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Figure 5. Number of modules vs number of bugs Figure 6. Number of modules vs number of 

reported in Trac 0.12.xx versionsbugs reported in Trac 1.0.xx versions 

 

Figure 7. Number of modules vs number of bugs Figure 8. Number of modules vs number of 

bugs         HGMGGreported in Trac 1.1.xx versionsreported in Trac 1.2.xx versions 
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5. CONCLUSION AND FUTURE WORK  

It is a well-known fact that the software maintenance is costly and effort intensive. Therefore, a software system 

should be maintainable. A lot of research has been done in the object-oriented systems written in different 

languages while less in software systems written in python. This paper analyzes the change in the bugginess of 

the python software system i.e., Trac. The results show that the patch uplifts not only increase the coding 

standards and the number of moSdules but fixes the bugs as well achieve the better quality of the software. A 

huge number of projects are developed using the python language paving the way to the researchers to analyze 

the effectiveness of these software. Not only the error-prone modules are troublesome, but there may be other 

factors as well that degrade the performance of the software. This work can be extended by evaluating the error 

prone modules in the software, analyzing which priority bugs involve more change in the lines of code and 

finding the correlation between the change in the number of lines of code due to fixing a bug and the number of 

bugs reported.  
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