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ABSTRACT  

Breast cancer classification from histopathological images presents significant challenges, particularly with 

imbalanced datasets that may skew learning models towards majority classes. This study explores the 

effectiveness of combining multiple vision transformer architectures—namely Vision Transformer (ViT), Data-

efficient Image Transformer (DeiT), and BERT Pre-training of Image Transformers (BEiT)—to classify breast 

cancer types using the BreaKHis dataset. Given the inherent data imbalance, we implement various techniques 

such as oversampling, cost-sensitive learning, and hybrid loss functions to enhance model training and ensure 

robust performance across different classes. We evaluate our approach through extensive experiments, 

demonstrating that the ensemble model not only achieves higher classification accuracy but also shows improved 

generalization over using single transformer models. This paper contributes to the field by detailing the ensemble 

strategy and providing insights into managing class imbalance in medical image analysis. 

 

1. INTRODUCTION  

Breast cancer is the most common cancer in women worldwide and is curable in over 70% of patients with pre-

metastatic stage disease [11]. At the time of diagnosis, over 90% of breast cancers are non-metastatic. For people 

presenting without metastasis, the treatment goal is tumor eradication followed by recurrence prevention [24]. It 

is of utmost importance to detect and diagnose cancer as fast as possible due to the effectiveness of treatment at 

early stages. This prompts the development of smart, automated detection systems. As computation technology 

advances and hardware becomes more accessible, deep learning has emerged as a popular field for dealing with 

images for classification, segmentation, and object detection. Deep learning methods get more sophisticated every 

day while still remaining fast and computationally efficient [16]. As a result, deep learning models have often 

been employed for image-based breast cancer detection [5], leading to the creation of standard task datasets such 

as BreakHis [21]. 

The basic and most popular deep learning structure for computer vision is the Convolutional Neural Network 

(CNN). They are especially popular for image classification [15]. CNNs operate in two phases. First, feature 

extraction is performed by applying a set of learnable filters, called kernels, to small, overlapping regions of the 

input images, which convolves the filters across the entire input. The results of these convolutions are features of 

the images, which are then combined and passed through fully connected layers. Generally, image classification 

systems follow the same structure—feature extraction, combination, and prediction. The training process for 

models also varies. Transfer Learning (TL) is a training process wherein models are first pretrained on large 

amounts of external (often unrelated) data and then simply fine-tuned on the required dataset, instead of the 
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conventional method of training models only on the given dataset after splitting into training and testing sets. The 

large number of open image datasets available for pretraining makes TL a popular choice for image classification 

tasks and is shown to often perform better than conventional training [13]. Image Transformer models [17] take 

advantage of TL by pretraining on massive external datasets and thus are strong feature extractors. Not all image 

datasets are made equal, however—datasets with imbalanced class distributions pose problems. Models tend to 

be biased towards the majority class during training and face difficulties in capturing and distinguishing between 

the minority classes, resulting in lower classification accuracy. This problem is even more prevalent in a task like 

breast cancer detection where both classes are equally important and cannot be overlooked. 

The main contributions of this paper can be summarized as follows: 

● We propose a novel breast cancer image classification model that uses an ensemble of three pretrained image 

transformer models—ViT, DeiT, BEiT—for feature extraction that are cross-fused together. 

● Transformers are used to capture diverse features that have parameterized contributions towards the 

classification via cross-fusion. This allows the model to effectively deal with class imbalances while 

improving general performance. 

● The model is successfully trained on the BreakHis Dataset that contains images of four different 

magnification factors—40X, 100X, 200X, 400X. The model shows better scores in terms of Accuracy, 

Precision, Recall, and F1-Score than other state-of-the-art models both with and without data oversampling 

across all four magnification factors, showing its robustness. 

 

2. RELATED WORKS  

Researchers have developed various networks based on machine learning and deep learning to identify cancerous 

patterns from images. Typically, image classification systems adhere to a common structure comprising three 

main stages: feature extraction, integration, and prediction. In this research article [10], the authors use an 

approach that uses joint color-texture features and a classifier ensemble to classify breast cancer images. The 

effect of different optical magnification levels on the image classification performance is studied. A combination 

of color-texture features are extracted from the images. Concatenated features were then passed to a classifier to 

conclude an image as benign or malignant. 

Several studies documented in the literature have utilized CNNs for the classification of medical images. Some 

approaches[20] use a pre-trained model and the outputs of the top-most layers of the CNN are used as features. 

The vectors corresponding to the output of those layers are then used as inputs for a classifier. However, task-

specific CNNs have performed better than deep feature extraction on some magnifications of the BreakHis dataset 

[21]. Bayramoglu et al [2] introduced both single-task and multi-task CNN models for the purpose of classifying 

the BreakHis Histopathological dataset. Various researchers have employed different pre-trained networks in the 

past to identify patterns indicative of breast cancer. Transfer learning, a fundamental technique in deep learning, 

involves leveraging pre-trained neural network models to address specific tasks. In the realm of medical imaging, 

particularly breast cancer classification, transfer learning plays a pivotal role in overcoming data scarcity 

challenges and enhancing model performance. Various CNN architectures, such as AlexNet, VGG, and ResNet, 

have been adapted and optimized for breast cancer detection tasks [14], [1]. 
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The BreakHis dataset is a publicly available dataset of breast cancer histopathological images. It contains 7,909 

images, divided into two classes: benign (2,480 images) and malignant (5,429 images). The dataset is heavily 

imbalanced, with the minority class (benign) being significantly smaller than the majority class (malignant).  

Class imbalance is a common problem in many datasets, and it can lead to poor performance of classifiers on the 

minority class. This is because classifiers trained on imbalanced datasets tend to be biased towards the majority 

class. In the case of the BreakHis dataset, the class imbalance can lead to models that are more likely to predict 

benign images as malignant. Many researchers have proposed different methods to address the problem of class 

imbalance. These include: 1. Under-sampling or reducing the number of majority class samples by randomly 

removing them, and 2. Over-sampling or increasing the number of minority class samples by replicating them. In 

the under-sampling method, data is resampled by eliminating instances from the majority class until the minority 

class constitutes a predetermined percentage of the majority class. However, as the dataset's imbalance increases, 

more samples are removed during under-sampling. Consequently, this approach poses a risk of discarding 

potentially valuable information. Conversely, in oversampling, overfitting can occur when instances are 

duplicated. This technique involves adding exact replicas of minority instances to the main dataset, which can 

lead to overfitting. 

So far, various data augmentation techniques have been proposed. These authors [19] use deep convolutional 

generative adversarial networks (GANs). This paper [18] uses different over-sampling and under-sampling 

techniques on heavily imbalanced datasets such that the performances of the CNN-based classifiers can be 

improved to those of the class-balanced dataset. Extensive experiments demonstrate that synthetic oversampling 

performs consistently better than undersampling across all scenarios. Some popular techniques used for this are 

Synthetic Minority Over-sampling Technique (SMOTE) [3] and adaptive synthetic (ADASYN) [12]. This 

research work [8] empirically establishes that employing deep networks with more than 10 layers significantly 

enhances the network training process and leads to improved convergence rates, especially in the context of 

imbalanced datasets. This assertion is substantiated through experimental validation, where deep network 

architectures, trained over 100 epochs, are compared with shallower counterparts. 

 

3. PROPOSED NETWORK  

The proposed system employs a novel approach to image classification, specifically aimed at imbalanced breast 

cancer classification. Our model leverages three pre-trained image transformer architectures to generate image 

encodings, which are then cross-fused and passed through linear neural network layers. The individual 

components of the model are discussed below. 

3.1 Visual Image Transformer 

While the Transformer architecture has become the standard for natural language processing tasks [23], 

its applications to computer vision remain limited. In vision, attention is either applied in conjunction 

with convolutional neural networks (CNNs), or used to replace certain components of CNNs while 

keeping their overall structure in place. The Vision Transformer (ViT) [9] shows that this reliance on 

CNNs is not necessary. ViT is a pure transformer applied directly to images and converts them to 

sequences of image patches. Like text transformers, image transformers are pre-trained on a large 
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amount of image data, namely the ImageNet [6] datasets, and can be fine-tuned for downstream tasks 

on smaller datasets. ViT attains excellent results compared to state-of-the-art convolutional networks 

on standard testing datasets while requiring substantially fewer computational resources to train. 

3.2 Data Efficient Image Transformer 

ViT models, discussed above, are pre-trained on large amounts of external data for long periods of time. The Data 

Efficient Image Transformer (DeiT) [22] greatly improves this training process by introducing a teacher-student 

strategy for training image transformers. DeiT utilizes a distillation token that causes the student to learn 

attentively from its teacher. The DeiT, an improvement on the ViT, can be trained much faster and performs 

competitively with less training data. The DeiT model is also trained on ImageNet[6]. 

3.3 Bidirectional Encoder Representation from Image Transformer 

Inspired by the BERT [7] transformer used in natural language processing (NLP), Bidirectional Encoder 

representation from Image Transformer (BEiT) is another upgrade on the conventional ViT. BEiT uses 

masked image modeling instead of simply pre-training a model on images and their classes. Each image 

takes two forms in the pre-training process, namely, image patches and discrete visual tokens. BEiT 

first “tokenizes” the original image into visual tokens, as if it were an NLP task. Then it randomly masks 

some image patches such that the pre-training objective is to recover the original visual tokens based 

on the corrupted image patches. Upon being trained on ImageNet, its results are competitive with DeiT 

and ViT. 

3.4 Cross-Fusion 

The cross-fusion process replaces simple concatenation by recursively fusing pairs of image embeddings created 

from different transformers. The process, that is performed along the embedding dimension, is described below: 

     Pair-wise Concatenation and Linear Transformation: First, we take all possible pairs of embeddings from the 

set of three and concatenate them. Then, we pass each of these concatenated pairs through a linear layer to obtain 

transformed embeddings: 

[𝐸1; 𝐸2] (for the pair (𝐸1, 𝐸2)) 

[𝐸2; 𝐸3] (for the pair (𝐸2, 𝐸3)) 

[𝐸3; 𝐸1] (for the pair (𝐸3, 𝐸1)) 

 

𝐸1 = 𝐸1 · [𝐸1; 𝐸2] 

𝐸2 = 𝐸2 · [𝐸2; 𝐸3] 

𝐸3 = 𝐸3 · [𝐸3; 𝐸1] 

  Where 𝐸1, 𝐸2, and 𝐸3 are the three sets of image embeddings of length 756 each, ";" is the concatenation 

function, 𝐸1, 𝐸2, and 𝐸3 are fully-connected layers of length 500 each, 𝐸1, 𝐸2, 𝐸3 are the three fused sets of 

length 500 each. 

Repeating the Process: We then repeat the same process for the three sets of transformed embeddings (𝐸1, 𝐸2, 

𝐸3). For each pair of transformed embeddings, we once again concatenate them and pass them through linear 

layers: 
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[𝐸1; 𝐸2] (for the pair (𝐸1, 𝐸2)) 

[𝐸2; 𝐸3] (for the pair (𝐸2, 𝐸3)) 

[𝐸3; 𝐸1] (for the pair (𝐸3, 𝐸1)) 

𝐸1 = 𝐸4 · [𝐸1; 𝐸2] 

𝐸2 = 𝐸5 · [𝐸2; 𝐸3] 

𝐸3 = 𝐸6 · [𝐸3; 𝐸1] 

Where 𝐸1, 𝐸2, and 𝐸3 are the three sets of fused embeddings of length 500 each, ";" is the concatenation function, 

𝐸4, 𝐸5, and 𝐸6 are fully-connected layers of length 500, 𝐸1, 𝐸2, 𝐸3 are the three re-fused sets of length 500. 

Concatenation of Final Results: Finally, we concatenate the three sets of final transformed embeddings to obtain 

the overall result: 

𝐸 = [𝐸1; 𝐸2; 𝐸3]  

Where 𝐸1, 𝐸2, 𝐸3 are the re-fused sets of length 500 and 𝐸 is the final concatenated embedding of length 1500. 

The cross-fusion process is central to the model's architecture, as it allows for efficient inclusion of features, 

ensuring that learned parameters control the contribution of each concatenated set towards the image 

classification. The features of each transformer are represented sufficiently, making it more robust to imbalances. 

3.5 Pipeline 

The aforementioned components are brought together to make the proposed pipeline. Each image is passed 

through the three different pre-trained transformer models - ViT, DeiT, and BEiT - creating three sets of feature 

vectors. The three sets are then cross-fused across the embedding dimension. The cross-fused vector outputs are 

then concatenated and passed through a fully connected layer of length 500, followed by an output layer of length 

2, depicting two classes. This entire unit is then trained (fine-tuned) on our image dataset. 

 

4. RESULTS 

 4.1 Experimental setup 

All experiments were conducted in a standardized environment using Google Colab with a Tesla T4 GPU (15GB 

memory). The implementation was done using PyTorch framework, leveraging its GPU acceleration capabilities 

through CUDA when available. 

4.1.1 Dataset Organization 

The dataset was organized by magnification levels (40X, 100X, 200X, and 400X), with each level's data stored in 

separate CSV files. To ensure robust evaluation, we implemented a k-fold cross-validation strategy with the 

following parameters: 

● Number of folds: 5 

● Random shuffling enabled to ensure unbiased data distribution 

● Batch size: 20 images per batch 

4.1.2 Data Loading and Processing 

The data loading pipeline was implemented using PyTorch's DataLoader class with the following configurations: 

● Training data: Shuffled to ensure random order during training 

● Testing data: Sequential loading to maintain consistency in evaluation 

● Both loaders utilized the same batch size of 20 
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4.1.3 Evaluation Methodology Model evaluation was conducted using a comprehensive set of metrics: 

● Confusion matrices for detailed error analysis 

● Binary classification metrics calculated for both classes: 

○ Accuracy: Overall correct predictions 

○ Precision: Measure of positive predictive value 

○ Recall: Measure of sensitivity 

○ F1-score: Harmonic mean of precision and recall 

For each fold, the model's performance was evaluated by computing these metrics independently for both benign 

and malignant cases as positive classes, providing a balanced view of the model's capabilities in handling both 

categories. 

4.2 Quantitative Results 

4.2.1 Overall Model Performance 

The proposed ensemble model demonstrated superior performance across all magnification levels, consistently 

outperforming baseline models. Most notably, the model achieved perfect accuracy (100%) at 40X magnification, 

while maintaining exceptionally high performance (>97%) across other magnification levels. 

4.2.2 Magnification-wise Analysis 

40X Magnification: The model achieved its peak performance at this magnification level with: 

● Perfect accuracy (100%) 

● For benign classification: Precision = 0.996, Recall = 1.0, F1-score = 0.998 

● For malignant classification: Perfect metrics with Precision = 1.0, Recall = 1.0, F1-score = 1.0 In comparison, 

traditional CNN achieved only 62.67% accuracy, while VGG16 and ViT showed competitive but lower 

performance at 94.67% and 94.6% respectively. 

100X Magnification: The model maintained excellent performance with: 

● 99.6% overall accuracy 

● Near-perfect metrics for both classes: 

○ Benign: Precision = 0.996, Recall = 0.99, F1-score = 0.996 

○ Malignant: Precision = 0.994, Recall = 0.998, F1-score = 0.994 Baseline models showed reduced 

performance, with CNN achieving 63% and ResNet50 achieving 67% accuracy. 

Let me continue with the remaining magnification levels and then add a comparative analysis: 

200X Magnification: The proposed model maintained its robust performance with: 

● 99.6% overall accuracy 

● For benign classification: Perfect precision (1.0), high recall (0.992), and F1-score (0.996) 

● For malignant classification: Exceptional metrics with precision (0.994), perfect recall (1.0), and F1-score 

(0.998) The baseline models showed varied performance: 

● CNN achieved 63.4% accuracy 

● VGG16 showed improved performance at 94.2% 

● ViT demonstrated competitive results with 94.52% accuracy 

400X Magnification: At the highest magnification, the model showed slight variation but maintained 

excellent performance: 
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● 97.6% overall accuracy 

● For benign classification: Precision = 0.966, Recall = 0.954, F1-score = 0.96 

● For malignant classification: Precision = 0.98, Recall = 0.982, F1-score = 0.98 Baseline models showed their 

lowest performance at this magnification: 

● CNN: 60.5% accuracy 

● ResNet50: 61.8% accuracy 

● VGG16 maintained better performance at 87.52% 

4.2.3 Comparative Analysis with Baseline Models 

Performance Patterns: 

1. CNN Performance: 

○ Showed consistent but lower performance across magnifications (60-63%) 

○ Best performance at 200X (63.4%) 

○ Struggled with class discrimination, particularly for benign cases (precision: 0.368-0.434) 

2. VGG16 Results: 

○ Second-best performer among baselines (87-94%) 

○ Optimal performance at 40X (94.67%) 

○ Showed good balance between benign and malignant classification 

3. ResNet50 Performance: 

○ Showed moderate performance (61-67%) 

○ Best results at 100X (67%) 

○ Demonstrated class imbalance issues with lower benign precision (0.268-0.49) 

4. ViT Results: 

○ Strong performer among baselines (87-94%) 

○ Peak performance at 40X (94.6%) 

○ Maintained consistent metrics across classes 

5. Proposed Model Advantages: 

○ Consistently outperformed all baselines across magnifications 

○ Showed remarkable stability across different magnification levels 

○ Effectively handled class imbalance with balanced metrics for both classes 

○ Achieved perfect or near-perfect performance in multiple scenarios 
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Fig. 1 - Results Heatmap 

4.3 Analysis of Magnification Impact 

4.3.1 Magnification-Performance Relationship Our analysis reveals distinct patterns in how magnification 

levels affect model performance: 

Lower Magnification (40X): 

● Achieved optimal performance with proposed model (100% accuracy) 

● Most baseline models showed their best performance 

● VGG16 and ViT demonstrated strong results (>94%) 

● Suggests that lower magnification captures sufficient discriminative features 

Medium Magnification (100X, 200X): 

● Maintained consistent high performance in proposed model (99.6%) 

● Baseline models showed varied responses: 

○ VGG16 maintained strong performance (93-94%) 

○ CNN and ResNet50 showed moderate improvement 

○ ViT demonstrated stable performance (~94%) 

Higher Magnification (400X): 

● Slight decrease in proposed model performance (97.6%) 

● Notable performance drop in baseline models: 

○ VGG16 dropped to 87.52% 

○ CNN decreased to 60.5% 

○ ResNet50 showed lowest performance at 61.8% 

4.3.2 Model Stability Analysis Performance Consistency Across Magnifications: 

1. Proposed Model: 

○ Standard deviation in accuracy: ±1.2% 

○ Maintained >97% accuracy across all magnifications 

○ Most stable performance among all models 

2. Baseline Models: 

○ CNN: Standard deviation ±1.3% (range: 60.5-63.4%) 
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○ VGG16: Standard deviation ±3.4% (range: 87.52-94.67%) 

○ ResNet50: Standard deviation ±2.4% (range: 61.8-67%) 

○ ViT: Standard deviation ±3.2% (range: 87.91-94.8%) 

4.4 Class-wise Performance Analysis 

4.4.1 Benign Classification Performance 

Performance Across Models: 

1. Proposed Model: 

○ Highest precision (0.966-1.0) across all magnifications 

○ Near-perfect recall (0.954-1.0) 

○ Most balanced F1-scores (0.96-0.998) 

○ Showed exceptional ability to identify benign cases without false positives 

2. Baseline Models for Benign Class: 

○ CNN showed poor benign classification (precision: 0.368-0.434) 

○ ResNet50 struggled with benign detection (precision: 0.268-0.49) 

○ VGG16 performed moderately well (precision: 0.816-0.95) 

○ ViT showed strong performance (precision: 0.806-0.942) 

4.4.2 Malignant Classification Performance 

Performance Across Models: 

1. Proposed Model: 

○ Achieved perfect scores at 40X (precision, recall, F1-score: 1.0) 

○ Maintained high precision (0.98-1.0) across magnifications 

○ Consistent high recall (0.982-1.0) 

○ Demonstrated robust malignant detection capabilities 

2. Baseline Models for Malignant Class: 

○ CNN showed better malignant detection (precision: 0.72-0.736) 

○ ResNet50 improved on malignant cases (precision: 0.726-0.788) 

○ VGG16 performed well (precision: 0.906-0.943) 

○ ViT maintained strong metrics (precision: 0.916-0.966) 

4.4.3 Class Imbalance Handling 

Impact Analysis: 

1. Proposed Model: 

○ Successfully mitigated class imbalance issues 

○ Minimal performance gap between benign and malignant classification 

○ Maintained balanced precision-recall trade-off for both classes 

2. Baseline Models: 

○ Showed significant bias towards malignant class 

○ Large performance gaps between classes: 

■ CNN: ~0.35 difference in precision 

■ ResNet50: ~0.45 difference in precision 
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■ VGG16: ~0.09 difference in precision 

■ ViT: ~0.08 difference in precision 
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