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ABSTRACT 

In the present work the finite element method has been employed to study the interaction of multiple cracks and 

the influence of the crack offset distance H and crack tip distance S on the interaction. The geometry chosen is a 

rectangular plate with central parallel cracks. The variations of stress intensity factors along with the stress 

distribution around the crack tips were studied with H& S. Due to the presence of a neighbouring crack, the 

intensification effect was observed. It was seen that the amount of interaction between the cracks depends to a 

great extent upon the parameter H& S. As the crack offset distance increases the interaction diminishes. An 

analysis of state of stress at the crack tip has also been done. 
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I. INTRODUCTION 

 

The fracture mechanics theory can be used to analyze structures and machine components with cracks and to 

obtain an efficient design. The basic principles of fracture mechanics developed from studies of [1-3] are based 

on the concepts of linear elasticity. 

The interaction between multiple cracks has a major influence on crack growth behaviours. This influence is 

particularly significant in stress corrosion cracking (SCC) because of the relatively large number of cracks 

initiated due to environmental effects. Wen Ye Tian and U Gabbert [4] have proposed pseudo – traction –

electric – displacement –magnetic –induction method to solve the multiple crack interaction problems in 

magneto elastic material. Most of the real life situations have the problem of multiple cracks and so it becomes 

important to study this interaction for an array of cracks keeping this in mind interaction between two parallel 

cracks has been studied and a detailed analysis has been made into this aspect. 

Since today, there have been over 20 approaches to calculate stress intensity factors. Some of these are the 

integral transform method [5], the Westergaard method [6],the complex variable function method [7], the 

singular equation integral method [8], conformal mapping [9], the Laurent series expansion [10], boundary 

collocation method [11], Green’s function method [12], the continuous distribution dislocation method [13], the 

finite element method [14], the boundary element method [15], the body force method [16] and the 

displacement discontinuity method [17]. The solutions of many of the fracture mechanics problems have been 

compiled in data hand books for stress intensity factors [18]and [19]. 
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The configuration of multiple cracks is so complicated that a solution may not be available from the handbooks 

and literatures. The above mentioned methods with analytical features, which are usually suitable for special 

cases or very simple crack configurations, are not sufficient to obtain reasonable results for general orientations 

due to many restrictions. In these cases numerical approaches are usually employed. 

In the numerical approaches proposed so far FEM provides a very simple, effective and accurate technique for 

evaluation of fracture parameters. 

The historical development of computational fracture mechanics is found in the works of Ingraffea and 

Wawrzynek [20] and Sinclair [21]. Sinclair [21] has presented an extensive review of stress intensity factor 

numerical prediction models. The advantages and disadvantages of using finite element in computational 

fracture mechanics have been well addressed by Ingraffea [22]. Miranda et al. [23] have discussed on the aspect 

of mesh refinement and associated error in computing stress intensity factors using finite element method. It has 

been reported that excessive mesh refinement may significantly degrade the calculation accuracy in crack 

problems. It was pointed out by Miranda et al. [23]that the ratio between the longest and shortest element edge 

lengths should be kept below 1600 to avoid calculation errors in SIF calculations. For meshes with length ratios 

higher than 1600, improved numerical methods to deal with ill conditioned matrices would be necessary to not 

compromise the calculation accuracy of the calculated SIF. Many works on mesh generation algorithms and 

new methods to improve the numerical computation of SIF values have been found in the works of Miranda et 

al. [24,25]. Recent studies show that the coefficients of higher order terms can also play an important role in the 

fracture process in notched or cracked structures. The recent studies show that in addition to the singular term, 

the higher order terms, in particular, the first non-singular stress term ( known as the T stress) may also have 

significant effects on the near notch tip stress field. The T-stress is considered in some studies as an auxiliary 

parameter for increasing the accuracy of the results for KI. Kim and Cho [26] for instance, showed that this non-

singular term has noticeable effects on the size and shape of plastic zone near the notch tip. Ayatollahi and 

colleagues demonstrated that the first non-singular term may have considerable contributions to the stress 

components around the notch tip and also on the fracture resistance of notched components under mode I 

loading [27, 28 and 29]. 

 

II. FINITE ELEMENT MODELLING 

 

The numerical simulations run by means of the FE software ANSYS are conducted to determine the stress 

intensity factors of two central parallel cracks. The specimen in fig.1 is schematized by a 2D model.  The 

specimen thickness  in  FE  analysis  was  kept  1.0  mm,  and  the  model  was  studied  in  plane  strain 

condition. Isoperimetric quadrilateral elements (PLANE 82) with singularity elements at and around the crack 

tip having 8 nodes are used throughout the analysis shown in Fig.  2.  The  radius of first  row  of  elements  is  

taken  as  a/8,  where  a  is  the  half  crack  length  and  the  radius  ratio (second  row/first  row)  is  adjusted  

automatically.  The number of elements around the circumference is taken as 32 for full crack model.  The FE 

modelling parameters are selected on the basis of the error analysis presented in Fig. 3 for two edge cracks.  

This is studied by varying the radius of the first row of the crack tip element and number of elements in the first 

row. To analyze the SIF calculation, the density of the FE mesh is modified by varying the number of the 

elements of the first row as 16, 20, 24, 32 and 40  keeping the radius of the first row as a/8, a is the crack length 

and taken as 10 mm. Also, the radius of the first row (a/n) around the crack tip  is  varied,  taking n 8, 10, 12, 16 
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and 20  with 32 number of elements.  FE analyses are performed for each of the ten meshing strategies, and K 

values are computed.  Theoretically KI is computed from the relation given for two collinear edge cracks [30]. It 

is found that the KI calculation errors stay below 0.8% for all meshing strategies. Figs. 3(a-b)  show  variation of 

the normalized KI (FE  based computation to  the actual (theoretical)Mode I SIF)  for  different  mesh  

configuration,  as  a  function  of  the  number  of  crack  face elements  and normalized first crack tip radius.  It 

is clearly seen from Fig. 3 that,  on  average, the  calculation  with  the  radius  of  first  element  as  1.25  mm  

(i.e. 8 / a=1.25)  and  number  of elements  around the crack tip as 16  yields least error  i.e. closest to unity  

amongst  the  other mesh configurations.For  the  numerical  simulation,  a  uniform pressure intensity of  1.0 

MPa is applied to  the  upper  and  lower  edges  in  the  vertical  direction  (y  axis).  The displacements in the 

horizontal direction (x axis) and rotations are prevented.  The mechanical properties used for FE analysis are 

E=70 GPa and Poisson’s ratio 0.33. The mode I and mode II stress intensity factors are computed from the 

following relations: 

𝐾𝐼 =  2𝜋
𝐺

𝑘

|∆𝑣|

 𝑟
                                                                                                                        (1) 

𝐾𝐼𝐼 =  2𝜋
𝐺

1 + 𝑘

|∆𝑢|

 𝑟
                                                                                                                (2) 

Where Δv, Δu and Δw are the motions of one crack face with respect to the other.  

k= 3−4ν if plane strain or axisymmetric; (3−ν) (1+ ν) if plane stress; where ν is Poisson's ratio. 

Fig. 1 Specimen Geometry 

 

Fig.2 Plane 82 Element with 8-Nodes 
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Fig. 3(A) Variation of Stress Intensity Factor With Number of Crack Tip Elements 

 

Fig. 3(B) Variation of Stress Intensity Factor With Radius of First Row of Elements, KI,FEM And 

KI, THE are Finite Element and Theoretical Based Computations of Mode I Stress Intensity 

Factor 

Mode III stress intensity factor in the present investigation is not considered because the thickness of the plate in 

FE analysis is taken as unity.  However, the three dimensional effect or plate thickness effect on the stress 

intensities can be seen in the works of Kotousov et al. [31,32].  

In  the  present  FE  computation,  out  of  balance  convergence  and  degree  of  freedom increment 

convergence criteria are adopted. The tolerance level kept is 0.001.  These criteria are well documented in the 

ANSYS manual [33]. 

 

III. RESULTS & DISCUSSIONS 

 

The effect of crack tip and crack offset distance of two central parallel cracks are discussed in this section. 

3.1 Stress Intensity Factor 

Figs. 4 to 12 show the relationship between normalised stress intensity factors and relative positions of two 

central parallel cracks. Mode I and mode II SIF’s are normalised with K0 for single central cracked geometry 

given by [Kumar [2009]]: 

𝐾0 = 𝜎 𝜋𝑎𝑓 𝑎 𝑤                              (1) 

 where 



International Journal of Advance Research In Science And Engineering              http://www.ijarse.com  

IJARSE, Vol. No.4, Special Issue (01), February 2015                                            ISSN-2319-8354(E) 

197 | P a g e  
 

𝑓 𝑎 𝑤  =1 + 0.128(𝑎/𝑤) − 0.288 𝑎/𝑤 2 + 1.523 𝑎/𝑤 3                            (2) 

Here a = 4 mm, w =W/2 = 40 mm 

𝑓 𝑎 𝑤  = 1.01007                              (3) 

hence, K0 = 358.06 MPa 𝑚𝑚 

K0 is the stress intensity factor for single central crack of size 2a in a finite width plate. Therefore unity in the 

normalised stress intensity factor corresponds to the condition of zero interaction. As seen in fig. 4 and 7, strong 

interaction appears at the inner crack tip, when the cracks are in the range S/H ≤ 8 mm position for H = 2 mm 

and S/H ≤ 6 mm for H = 4 mm. The difference between SIF’s at inner and outer crack tip becomes almost 

insignificant beyond S/H = 12 mm. 

At the outer crack tip as shown in fig 4 and 7, little interaction effect appears when the cracks are very close to 

each other. It is observed that for H ≤ 4 mm, maximum of 10% increase in mode I SIF is seen as compared to 

single central crack. 

Fig. 5 and 8 shows the variation of mode II SIF’s for both inner and outer crack tips for H=2 mm and 4 mm 

respectively and it can be seen that there is an interaction on mode II SIF and its value is about 4.5% of mode I 

SIF at outer crack tip for H = 2 mm and H = 4 mm and thereafter it reduces to negligible interaction. It is seen 

that the interaction is higher for inner crack tip than the outer one.  

Figs. 10 and 11 shows that two type of interactions occur. When H ≥ 25 mm, a relaxation (less than unity in 

normalised SIF) and for H < 25 mm intensification (higher than unity) exists. Fig.11 also reveals that the 

difference of SIF’s for inner and outer crack tip is very small when H ≥ 25 mm, but the difference increases to 

about 10% beyond H=5 mm. Thereafter the difference between SIF at inner and outer crack tip remains 

constant. Similar trends are seen for both KI and KII. 

 

Fig. 4 Variation of Normalized S.I.F’s For Central Parallel Crack Specimen C1 (H=2 Mm) With 

S/H 



International Journal of Advance Research In Science And Engineering              http://www.ijarse.com  

IJARSE, Vol. No.4, Special Issue (01), February 2015                                            ISSN-2319-8354(E) 

198 | P a g e  
 

 

Fig.5 Variation of Normalised SIF’s for Central Parallel Crack Specimen C1 (H=2 Mm) With 

S/H 

 

Fig. 6 Variation of Normalized S.I.F’s for Central Parallel Crack Specimen C1 (H=2 Mm) With 

S/H 

 

Fig. 7 Variation of Normalized S.I.F’s for Central Parallel Crack Specimen C1 (H=4 Mm) With 

S/H 
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Fig. 8 Variation of Normalized S.I.F’s for Central Parallel Crack Specimen C1 (H=4 Mm) With 

S/H 

 

Fig. 9 Variation of Normalized S.I.F’s for Central Parallel Crack Specimen C1 (H=4 Mm) With 

S/H 

 

Fig. 10 Variation of Normalized S.I.F’s for Central Parallel Crack Specimen C1 (S=4 Mm) With 

S/H 
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Fig. 11 Variation of Normalized S.I.F’s for Central Parallel Crack Specimen C1 (S=4 Mm) With 

S/H 

 

Fig. 12 Variation of Normalized S.I.F’s for Central Parallel Crack Specimen C1 (S=4 Mm) With 

S/H 

2.2 Analysis of state of Stress 

The two dimensional finite element model presented in this work has been used to investigate the state of stress 

around the crack tip in plane strain condition. The state of stress at a radial distance r from the crack tip is 

schematically shown in Fig. 13. The results obtained for different crack configurations are presented in Figs.12 

to 19. The stresses computed for double edge cracks are normalized with σywhich is the yield strength of the 

material. 

Fig. 14-16 shows the variation of σxx, σyy and τxy around the crack tip element at a radial distance of 0.5 mm for 

crack specimen for different crack tip distance S = 2 mm, 6 mm and 12 mm. Fig. shows that significant 

variation in σyy is observed between S = 2 mm and 6 mm or 12 mm. For S = 2 mm, σyy at the crack tip is almost 

2.5 times the yield strength of the material whereas for S= 6 mm or 12 mm, the value of σyy remains less than 

two times of the yield strength of the material. σxx remains less than yield strength of the material for all S 

values. The shearing stress τxy are greater than zero and are 49.101 MPa, 9.1250 MPa and 13.42 MPa for S = 2 

mm, 6 mm and 12 mm respectively. From the distribution of stresses, it can be inferred that crack tip distance 
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for specimen geometry has inverse effect i.e. for smaller values of S, the mode I and mode II SIF should be 

more as compared to higher values of S.  

The effect of H on stress distribution around the crack tip elements of specimen configuration are shown in Fig. 

17-19 for S = 4 mm. Similar trend as seen for different S values are observed for crack offset distance H also. 

The stresses are higher for smaller values of H as compared to higher values of H. It means that when cracks are 

close to each other the higher state of stress is yielded at the crack tip and as S or H increases stress reduces. 

This indicates that both S and H have significant effect on the state of stress at the crack tip and hence on the 

stress intensity factors. 

 

Fig. 13 Schematic Representation of State of Stress of a Cracked Body 

 

Fig. 14 Variation of Σxx/Σy with S for Specimen Geometry C1 (H=2 Mm) 
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Fig.15 Variation of Σyy/Σy with S for Specimen Geometry C1 (H=2 Mm) 

 

Fig.16 Variation of Τxy/Σy with S for Specimen Geometry C1 (H=2 Mm) 

 

Fig. 17 Variation of Σxx/Σy with H for Specimen Geometry C1(S=4 Mm) 
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Fig 18 Variation of Σyy/Σy with H for Specimen Geometry C1(S=4 Mm) 

 

Fig. 19 Variation of Τxy/Σy with H for Specimen Geometry C1(S=4 Mm) 

 

III. CONCLUSIONS 

 

1. There is a profound effect of presence of a neighbouring crack on the fracture parameters. 

2. Intensification effect is observed for mode I stress intensity factor. 

3. Mode II stress intensity factor which was otherwise absent for a single crack comes into existence due to 

the interaction. 

4. The stress intensity factors were greater for the neighbouring crack tips.  

5. The interaction ceases to exist as cracks move farther away from each other. 

6. Mode I stress intensity factor is predominant for all crack orientations. 

7. The vulnerability of a structure increases due to the presence of multiple neighbouring cracks. 
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